
TTA-FedDG: Leveraging Test-Time Adaptation to Address Federated Domain
Generalization

Haoyuan Liang , Xinyu Zhang , Shilei Cao , Guowen Li , Juepeng Zheng*

School of Artificial Intelligence , Sun Yat-sen University , China
{lianghy68 , zhangxy869 , caoshlei , ligw8}@mail2.sysu.edu.cn , zhengjp8@mail.sysu.edu.cn

Abstract

In recent years, Federated Domain Generalization (FedDG)
has succeeded in generalizing to unknown clients (domains).
However, current methods only utilize training data, and when
there is a significant difference between the unknown client
and source client domains (domain shift), these methods can-
not ensure model performance. This limitation appears to
have caused research in FedDG to reach a bottleneck. On
the other hand, test data is a resource that can help models
adapt while previous FedDG approaches have not taken this
into account. In this paper, we introduce a new framework
TTA-FedDG to address the FedDG problem, which leverages
test-time adaptation (TTA) to adapt across different domains,
thereby enhancing the generalization of the model. We pro-
pose the method Federated domain generalization based on
select Strong Pseudo Label (FedSPL), which combines fast
feature matching and knowledge distillation. Our method con-
sists of two parts. Firstly, we use fast feature reordering for
feature mixing during local updates on the client side, im-
proving the robustness of the global model and enhancing its
generalization ability to mitigate domain shift. Secondly, we
employ a teacher-student model with contrastive learning and
label selection during the testing phase, enabling the global
model to better adapt to the distribution of the target client,
thereby alleviating domain shift. Extensive experiments have
demonstrated the effectiveness of FedSPL in handling domain
shift, outperforming existing FedDG methods across multiple
datasets and model architectures.

Introduction
As deep learning models(Zhang et al. 2024a,b) continue to
evolve, more data is required to train larger models, such as
ChatGPT. However, some clients consider their data private,
making them reluctant to share it for training, resulting in
data silos. Federated Learning (FL) (McMahan et al. 2017)
has emerged as a solution to address data privacy and data
silo issues, garnering significant attention in recent years.
However, in the traditional FL paradigm, each client trains a
local model using their data and then aggregates these mod-
els into a global model to accommodate the participating
clients. Various approaches, such as adaptive weights (Yu,
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Figure 1: This illustration highlights the two major differ-
ences between FL and TTA-FedDG. First, the clients served
by the global model differ: FL emphasizes the applicability
of the model to known clients, whereas TTA-FedDG focuses
on its generalization to unknown clients. Second, in TTA-
FedDG, we use unlabeled test data to adapt the global model,
which is not the case in traditional FL.

Bagdasaryan, and Shmatikov 2020) and personalized feder-
ated learning (Shamsian et al. 2021), have been proposed to
improve the performance of global models on local clients.
However, as FL becomes more widespread, it attracts new
clients who want to use the global model on their dataset.
Traditional Federated Learning faces challenges in adapting
effectively to new clients, particularly when the data distribu-
tion of these new clients differs significantly from that of the
training clients. To address this, Liu et al. (2021) proposed
the Federated Domain Generalization (FedDG) paradigm
and the ELCFS method to enhance the generalization of the
global model to new clients. However, in ELCFS, sharing dis-
tribution information during client local training can lead to
privacy leaks. Consequently, much of the current research has
shifted toward leveraging local models during the aggrega-
tion phase, leading to the development of adaptive weighting
methods such as FedDG-GA (Zhang et al. 2023) within the
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FedDG paradigm.

Although these adaptive weighting methods can improve
the generalization of the global model to unknown domains
to some extent, they may underperform in certain domains
compared to FedAvg due to the lack of knowledge about the
distribution of these unknown domains. This over-reliance
on training data seems to have caused traditional FedDG
methods to reach a bottleneck.

A natural question arises: how can the model utilize un-
known test data to achieve self-adaptation? We believe that
test data can be treated as unlabeled training data, thus
enabling unsupervised learning during testing. Therefore,
we propose a new framework to address the FedDG prob-
lem: Test-time Adaptation Federated Domain Generalization
(TTA-FedDG). As shown in Fig.1, the differences between
FL and TTA-FedDG are illustrated. Then, we propose the
method of Federated domain generalization based on select
Strong Pseudo Label (FedSPL) which Combines Feature or-
dering in training and Knowledge Distillation in test time to
overcome domain shift for unknown clients. Feature mixing
has already shown significant improvements in domain gen-
eralization (DG), as seen in approaches like MixStyle (Zhou
et al. 2021). Feature mixing introduces a broader range of
feature combinations during client-side training, thereby im-
proving the model’s generalization ability. However, feature
mixing methods based on AdaIN (Huang and Belongie 2017)
typically only match limited-order statistics, such as first and
second-order moments, which can significantly affect the
quality of the mixed features. Therefore, firstly, we apply
a matching and mixing approach based on feature ranking,
enabling FedDG to match all-order statistics during client
training. Furthermore, we are the first to use TTA methods in
FedDG. Secondly, we propose an improved teacher-student
model to enable the global model better to learn the distri-
bution of new client data during testing, thereby enhancing
the performance of the model in unknown domains. The
framework of our method FedSPL, is illustrated in Fig.2.

The traditional teacher-student model overly relies on
pseudo-labels generated by the teacher model, which ham-
pers the ability of the model to learn the new client data distri-
bution effectively. Therefore, selecting high-quality pseudo-
labels is a significant challenge. Previous works have used
methods like sorting by the maximum value of the classifier
or using KL divergence (Hershey and Olsen 2007) to deter-
mine the confidence level of the pseudo-labels. In contrast,
we design a variable t defined as the difference between the
highest and second-highest values of the classifier, which
better reflects the confidence of the model in the classifica-
tion result. Based on the size of this variable, we divide the
samples and pseudo-labels into high-quality and low-quality
groups. The student model is trained sequentially with these
groups, using different weights and loss functions for each.
Additionally, to address the memory issue during the training
of the student model, we incorporate an optimized contrastive
loss (Wang and Liu 2021). Since the size of image pixels af-
fects brightness and their relationships affect contours, we
normalize the input features before performing contrastive
learning. Our main contributions are summarized as follows:

• We propose a new framework to address the FedDG prob-
lem: Test-time Adaptation Federated Domain Generaliza-
tion (TTA-FedDG), which leverages test-time adaptation
(TTA) techniques. TTA can learn the domain distribution
of new clients during the testing phase, thereby enhancing
the generalization of the model.

• We propose a method called Federated domain general-
ization based on select Strong Pseudo Label (FedSPL).
This method uses feature mixing based on feature rank-
ing to enhance the generalization ability of client models
and applies an improved teacher-student model during the
testing phase to adapt the model to the distribution of new
client domains.

• We conducted extensive experiments to demonstrate the
state-of-the-art performance and effectiveness of our TTA-
FedDG framework in handling FedDG tasks.

Related Work
Federated Domain Generalization (FedDG)
Domain Generalization (DG) aims to address the issue of
model overfitting due to limited domain-specific data (Li
et al. 2019). DG allows for the use of data from multiple
domains during training, enhancing the generalization ability
of the model without the need for domain-specific knowl-
edge. Current research in DG can be categorized into three
main approaches. Techniques such as style augmentation
(Jackson et al. 2019) enhance data diversity through feature
mixing, preventing overfitting. Methods like JiGen (Carlucci
et al. 2019; Du et al. 2020) aim to capture the characteristics
of each domain and promote domain knowledge sharing to
boost model generalization. However, joint domain gener-
alization faces challenges due to privacy concerns, as data
from different domains cannot be pooled together for training
(Sun, Chong, and Ochiai 2023). This limitation hinders the
applicability of many existing DG methods. Federated do-
main generalization is an emerging field where each domain
trains a local model which is then aggregated, considering
the generalization ability of the global model on target clients
(or domains). Despite recent progress, research in this area
is still limited. For example, ELCFS (Liu et al. 2021) gener-
alizes the model by sharing spectra across domains, yet this
approach risks privacy leaks. Adaptive weighting methods
(Zhang et al. 2023) have also been proposed, but these still
face significant challenges.

However, current methods (Wei and Han 2024; Zhou et al.
2024) only utilize training data, overlooking test data that
valuable knowledge can provide to the model.

Test-Time Adaptation(TTA)
Test-Time Adaptation (TTA) (Karim et al. 2023; Cao et al.
2024) is a technique that improves model performance and
generalization by fine-tuning or adapting to new data during
the inference phase. Hypothesis Transfer Learning (HTL)
(Kuzborskij and Orabona 2013) is one of the methods TTA
uses to address domain generalization. It leverages prior
knowledge (hypotheses) learned from related tasks to aid
and accelerate the learning process of a new task, particu-
larly when labeled data for the new task is scarce. However,
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Figure 2: This figure illustrates the framework of our method,
FedSPL. We employ the Model Based on Strong pseudo-
Labels (MBSL) by incorporating label selection, hierarchical
training, and contrastive learning into the teacher-student
model training process. This approach mitigates domain shift
and memory issues during training. Additionally, since TTA
training can introduce instability, we enhance the stability of
the teacher-student model by incorporating Feature Mixing
and feature Reordering (FMR) during local training.

in TTA-FedDG, the global model does not have access to
the test set labels, making this type of method unsuitable
for TTA-FedDG. TTA has been employed in Personalized
Federated Learning and has shown excellent results, such as
in FedTHE (Jiang and Lin 2022) and ATP (Bao et al. 2024).

However, TTA is more necessary when dealing with un-
known clients. Although ATP (Bao et al. 2024) has involved
generalization to unknown clients in part experiments, ATP is
designed to address feature shift and label shift in TTA-PFL.
Therefore, it has not yet been proposed that the TTA-FedDG
framework be used to address the FedDG problem.

Method

Preliminaries

In this paper, we propose a new framework TTA-FedDG,
which leverages test-time adaptation to address federated
domain generalization (FedDG). In FedDG, this is a more
stringent setting compared to heterogeneous FL, as it requires
each client to have its domain distribution, with each client
domain being distinct from the others. In other words, the
data distribution for each client k follows the domain Dk. Ad-
ditionally, the source domain distribution {Dk}Nk=1 and the
target domain distribution {Ti}Mi=1 are not the same, which
is another key difference between FL and FedDG.In previous
work, the focus has predominantly been on learning from data
samples {(xDk

1 , yDk
1 ), · · · , (xDk

nk
, yDk

nk
)} within each source

client k where nk represents the size of the dataset for source
client k.Although test samples {xTi

1 , · · · , xTi
mi
} lack labels,

they are not unusable where mi represents the size of the
dataset for test client i.Then, we will explain how to adjust
the model using the aggregated global model and target data.

Feature Mixing Based on Feature Reordering(FMR)
Most TTA methods exhibit significant fluctuations, indicat-
ing high instability. To address this, we incorporated image
augmentation techniques during the TTA adaptation process
to enhance model robustness. Additionally, we implemented
Feature Mixing Based on Feature Reordering (FMR) to fur-
ther strengthen the robustness of local models f(wlk ; ·). The
global model f(wg; ·) is then obtained by linearly weight-
ing the local models (as non-linear weighting with FMBFR
might not yield optimal results). This approach enhances the
robustness of f(wt; ·) , f(wg; ·) and f(ws; ·).

Our method FMR is inspired by (Zhang et al. 2022), where
we implement fast histogram matching to achieve feature
mixing without losing higher-order statistics. This approach
ensures that the samples used for training differ each time, as
the features are randomly shuffled. This effectively increases
the diversity of the samples, thereby enhancing the robustness
of the f(wlk ; ·).

As shown in Fig.2, we illustrate the role of FMR in local
training. Eq.1 demonstrates the state before shuffling, while
Eq.2 shows the state after shuffling.

Boriginal = [F (xDk

B1
), · · · , F (xDk

Bq
), · · · , F (xDk

Bn
)] (1)

Bshuffle = [F (xDk

Bi
), · · · , F (xDk

Bp
), · · · , F (xDk

Bj
)] (2)

For F (xDk

Bp
) and F (xDk

Bq
), we sort them and assign the

indices of F (xDk

Bq
) to F (xDk

Bp
) to achieve feature mixing.

This mixing strategy, when applied to images, can greatly
preserve the contours of F (xDk

Bq
) while retaining the colors

of F (xDk

Bp
). The blending method is detailed in Eq.3 :

F augp(xDk

Bq
) = Indexq(Sort(F (xDk

Bp
)))

s.t. Indexq = Index(F (xDk

Bq
))

(3)

The size relationship between image pixels is positively
correlated with feature values. Therefore, to preserve the con-
tours of F (xDk

Bq
), we must ensure that the order of F (xDk

Bq
)

feature values remains unchanged while using F (xDk

Bp
) fea-

ture values for rendering. The final batch that enters the
network is shown in Eq.4:

Bfinal = [F augi(xDk

B1
) · · ·F augp(xDk

Bq
) · · ·F augj (xDk

Bn
)]

(4)
It is worth mentioning that our mixing results are not identical
each time because the shuffle order is random. This means
that the batches entering the local model are different each
time. By leveraging this randomness and the feature mixing
method, we enhance the diversity of the samples, thereby
increasing the robustness of the model.

Model Based on Strong pseudo-Labels(MBSL)
Teacher Student Model is divided into two sequential
parts: the first part generates pseudo-labels through the
teacher model, and the second part trains the student model
based on these generated pseudo-labels, thereby updating
the student model parameters ws.After the server aggregates
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the local client models to obtain the global model param-
eters wg, the global model is passed to both the teacher
model and the student model. Therefore, at the start of TTA,
i.e.,ws = wt = wg .

After the student model updates ws, the parameters of
the teacher model wt are updated through the Exponential
Moving Average (EMA) (Hansun 2013). The update method
for EMA is as follows Eq.5:

wj+1
t = ρwj

t + (1− ρ)wj+1
s (5)

where j is the updating number, and ρ represents the adjust-
ment coefficient, a hyperparameter that indicates the level of
trust in the teacher and student models.

To enhance the generalization ability of the teacher model,
we expanded the target original data by a factor of E (=10)
through image augmentation. We then used the augmented
target data to train the teacher model, while the original target
data was used to train the student model. The pseudo-labels
generated by the teacher model are computed using Eq.6:

yit = argmax f̄(wt;x
Ti
i ) = argmax

1

E

E∑
e=1

fe(wt;x
Ti
i )

s.t. f(wt;x
Ti
i ) = {f1(wt;x

Ti
i ), · · · , fe(wt;x

Ti
i )}

(6)
where we incorporate image augmentation as an integral part
of the network. fe(·) represents the input to the model after
e-level image augmentation and f̄(·) represents the mean of
these models.

Selecting Strong Pseudo-labels is key to improving global
model performance. The traditional Teacher Student Model
generates pseudo-labels in one go based on the teacher model,
which can result in pseudo-labels being overly similar to the
source domain label distribution and this makes it difficult to
effectively address domain shift. This does not fully leverage
the potential of pseudo-labels. We proposed a new pseudo-
label learning strategy based on the Curriculum teacher stu-
dent model(Karim et al. 2023). We classify the target dataset
into two categories based on the reliability of the pseudo-
labels: Strong and Weak. Although there have been some
previous classification standards (Qiao and Peng 2021) based
on traditional classifier statistics, such as mean entropy and
variance, these methods struggle when the probability given
by the classifier is dispersed and concentrated. For exam-
ple, these methods become difficult to apply effectively in a
classification task with four classes, where the predicted prob-
abilities are 0.5, 0.4, 0.05, and 0.05. Therefore, we propose a
new standard for classifying pseudo-labels.

Our insight is that even if the maximum predicted prob-
ability is relatively small, it does not necessarily indicate a
lack of confidence in the prediction. It may simply reflect
sufficient confidence in excluding other classes. Therefore,
we propose the confidence separation score (CSS), which
we define as the difference between the maximum predicted
probability and the second-highest value. The details are as
follows Eq.7:

CSSm = max(f(wt;x
Ti
m ))− 2nd max(f(wt;x

Ti
m )) (7)

where max represents the maximum value, 2nd max repre-
sents the second maximum value, and f(·) denotes the pre-
dicted probability output of model.

We determine whether a label is strong or weak based on
whether it exceeds a threshold δ, as shown in Eq.8:

τm =

{
1, if CSSm ≥ δ

0, otherwise.

s.t. δ =
1

mi

mi∑
m=1

CSSm , m ∈ (1,mi)

(8)

when τ = 1, we consider it a strong pseudo-label, and when
τ = 0, it is a weak pseudo-label. We represent the thresh-
old τ using the mean of the CSS. δ varies with different
target clients, making it no longer a fixed hyperparameter,
which allows the pseudo-label selection process to be adap-
tive. After labeling each sample, a batch will contain two
types.When τ i = 1, BTi

S = {(xTi
i , yit)}Bi=1 and when τ i = 0,

BTi

W = {(xTi
i , yit)}Bi=1. where yit is the pseudo-labels gener-

ated by the teacher model for the sample xTi
i .

Design Different Loss Functions. We apply different
strategies for strong and weak labels. Since we consider
BTi

S to be highly confident, we treat them as true labels and
calculate the cross-entropy (CE) loss, as shown in Eq.9, to
update the parameters of the student model.

Ls = −
1

|BTi

S |

|BTi
S |∑

i=1

yit · log f(wt;x
Ti
i )) (9)

However, due to the differences in sample types, the output
of classifier results may vary. If we only use the BTi

S , the
model might only learn to classify easier classes, while more
challenging classes could fall into the BTi

W , which would not
improve the performance of the model on those difficult-
to-classify classes. To fully leverage the target data, we also
include BTi

W in the learning process, but assign them a smaller
gradient value during gradient descent. To ensure that more
emphasis is placed on learning from the strong class initially,
we set the starting parameter value from 0 to 0.005. For
BTi

W , we compare the classifiers of the teacher model and
the student model, aiming for them to produce consistent
prediction results. The loss (Zhou et al. 2003; Karim et al.
2023) we apply is shown in Eq.10:

Lw =
1

|BTi

W |

|BTi
W |∑

i=1

∥f̄(wt;x
Ti
m )− f(ws;x

Ti
m )∥2 (10)

However, the pseudo-labels used for training the student
model are generated by the teacher model using the same
data, which can lead to a memory issue. When the label
quality is poor, including the performance of strong labels,
the memory effect can cause the performance of the model
to stagnate during the adaptation phase, making it difficult
to achieve improvement. Therefore, we introduce contrastive
learning to help the model distinguish between similar and
dissimilar features, thereby alleviating the memory issue and
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continuously improving its performance during the test phase.
For any test sample xTi

m , we select two augmented versions
from the teacher model, version 1 aug1(x

Ti
m ) and version

e auge(x
Ti
m ), to perform contrastive learning (CL), thereby

enhancing the robustness of the model.
Next, we perform feature extraction F (·) on aug1(x

Ti
m )

and auge(x
Ti
m ) obtaining features F (aug1(x

Ti
m )) and

F (auge(x
Ti
m )) . Since sample augmentation may introduce

noise, we apply Principal Component Analysis (PCA) to
the extracted features to isolate the principal features pm =
PCA(F (aug1(x

Ti
m ))) and qm = PCA(F (auge(x

Ti
m ))). We

then conduct CL on qm and pm. Here, both the auge(·) and
the F (·) are components of the model fe(·).

We believe that traditional CL, which directly computes
similarity between features, can adapt to various tasks. How-
ever, for image data, pixel values primarily reflect brightness,
while the size relationship between adjacent pixels character-
izes the contour of the image. Therefore, leveraging this char-
acteristic of images, we normalize the principal features after
image processing before computing similarity. This approach
significantly mitigates dissimilarities caused by variations in
image brightness. The CL loss we use is shown in Eq.11:

Lc = −
1

B

B∑
m=1

log
exp(sim(Pm, Qm)/T )∑B

b=1 ϕb

,

s.t. Pm = pm − p̄m, Qm = qm − q̄m,

ϕb = exp(sim(Pb, Qb)/T ) + 1b̸=m exp(sim(Pm, Pb)/T )
(11)

where T is a temperature constant. sim(·) is Cosine Sim-
ilarity. Through hierarchical learning of pseudo-labels and
leveraging them, we obtain the total loss as shown in Eq.12:

Lt = (1− αj − βj)Ls + αjLw + βjLc (12)

Since we prioritize learning from strong samples, the ini-
tial value of α is set to α0 = 1, with an upper bound of
η = 0.001. Although we aim to learn from all samples, we
remain cautious about weak samples, and thus, their contri-
bution to the loss is minimal. Therefore, the update strategy
for α is defined as shown in Eq. 13 below:

αj = αj−1(1− δ) (13)

Similarly, CL can help the model better learn similar class
features and distinguish between different classes in the early
stages. However, as iterations progress, its impact becomes
less significant. Therefore, we apply exponential decay to the
coefficient β, with the update defined as shown in Eq. 14:

βj = βj−1e−γ (14)

Here, we set the initial values β0 as 0.4 and set γ to 1e-3.
The pseudocode of our method is in Algorithm 1.

Experiments
Setup
In this section, we briefly introduce the experimental setup.
Unless otherwise specified, all experiments will be conducted
under the following conditions. The default settings are as
follows:

Algorithm 1: Federated domain generalization base on select
Strong Pseudo Label(FedSPL)
Initial global model w = w0, k source domain client D =
{D1, D2, ..., Dk}, the weights q = {n1

N , n2

N , .., nk

N },datasets
size of domain client e is ne, N = n1 + n2...+ nk. (Hyper-
parameters:local epoch T ,total aggregation round R)
Final global model wR

Server:
Deploy the global model w0 to each domain client to

obtain each client model:wk
0 = w0

for each round i = 1, 2, ..., R do
for each domain client e = 1, 2, ..., k in parallel

do
we

i+1← Client ( e , wi )

wi+1←
∑k

e=1 q
ewe

i+1

Deploy wi+1 to all domain clients.
Client:

for each local epoch t = 1, 2, ..., T do
for Batch b = 1, 2, ..., B do

Bfinal = FMR(Boriginal)

wi+(t+1) ← wi+(t) − η∇L(wi+(t);F (xDk

Bq
))

return wi+1 = wi+(T ) to Server
Test:

The initial setting:wt = ws = wR

for each epoch j = 1, 2, ..., T ′ do
wj+1

s = MBSL(wj
s)

wj+1
t = ρwj

t + (1− ρ)wj+1
s

return wt to target client

Dataset. We evaluate our proposed method on three widely
used domain benchmarks. (i) The PACS (Li et al. 2017)
dataset contains four distinct domains (Photos, Art Paint-
ings, Cartoons, and Sketches), with a total of 9,991 images.
Each domain shares the same 7-class label space, despite the
variations in image styles. To evaluate the generalization ca-
pability of our model, we followed the standard split scheme
for training and validation, and we conducted extensive ab-
lation experiments on this dataset. (ii) The Office-Home
(Venkateswara et al. 2017) dataset contains approximately
15,500 images across 65 categories from four domains (Art,
Clipart, Product, and Real-World), offering a diverse range
of categories that better test the robustness of our method. (iii)
The Digit-5(Wei and Han 2024) dataset is designed for digit
recognition and includes images from five different domains:
MNIST (mt), SVHN (sv), USPS (up), Synth (syn), and MNIST-
M (mm). The multi-domain nature of this dataset allows us to
test the generalization.

Comparing Methods. We selected several representative
methods from the TTA and FL fields for comparison, with Fe-
dAvg (McMahan et al. 2017) serving as the baseline method.
FedAvg is known for its stable performance with unknown
target clients. In our comparisons, we selected classic algo-
rithms from FL, FedDG, and TTA, with ATP and GA serving
as the state-of-the-art methods for TTA-FedDG and FedDG,
respectively.Among them, FedProx (Li et al. 2020), Fed-
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Method TTA PACS OfficeHome
Photo Art Cartoon Sketch Avg Product Art Clipart Real Avg

FedAvg × 92.77 77.29 77.97 81.03 82.26 72.72 57.60 52.28 73.88 64.12
FedProx × 93.15 77.72 77.73 80.77 82.34 73.37 58.76 52.67 73.88 64.67
FedCSA × 91.88 77.00 76.79 80.84 81.63 72.96 57.58 53.99 73.98 64.63
FedNova × 94.03 79.93 76.39 79.26 82.40 73.72 58.81 49.89 73.33 63.94

AM × 93.29 80.86 77.62 81.05 83.20 73.24 58.76 51.87 73.84 64.42
RSC × 92.67 77.98 77.80 82.90 82.91 73.26 57.44 50.31 73.42 63.61

FedSAM × 91.20 74.45 77.77 83.35 81.69 73.58 55.34 54.75 73.74 64.35
HarmoFL × 90.99 74.51 77.43 81.73 81.16 73.89 57.44 53.42 74.95 64.93
Scaffold × 92.50 78.09 77.23 80.67 82.12 72.16 59.00 52.78 73.22 64.29
ELCFS × 93.31 82.23 74.77 82.27 83.24 71.11 57.85 54.93 73.71 62.27

GA × 93.97 81.28 76.73 82.57 83.64 73.39 58.57 54.39 74.73 65.27

DSBN ✓ 96.26 82.83 80.99 77.50 84.25 73.34 56.49 53.64 73.03 64.13
Tent ✓ 96.56 85.94 83.06 81.39 86.83 74.63 57.95 56.48 74.67 65.92
ATP ✓ 95.52 82.96 79.46 82.28 85.04 75.31 59.97 56.72 75.21 66.80

FedSPL (ours) ✓ 98.14 89.38 84.72 82.84 88.77 76.56 60.86 55.88 74.81 67.03

Table 1: Results (%) of PACS on ResNet18 and Results (%) of OfficeHome on ResNet50 (Best in bold)

CSA (Ma et al. 2021), FedNova (Wang et al. 2020b) ,AM
(Qu et al. 2022), RSC (Huang et al. 2020), FedSAM (Qu
et al. 2022), HarmoFL (Jiang, Wang, and Dou 2022), Scaf-
fold(Karimireddy et al. 2020) and GA (Zhang et al. 2023)
are algorithms used to optimize FedDG, while DSBN (Jiang
et al. 2022), Tent (Wang et al. 2020a), and ATP (Bao et al.
2024) are methods applied for TTA.

Implementation Details. For local model training across
the PACS, OfficeHome, and Digit-5 datasets, we utilize ar-
chitectures ResNet18 and ResNet50, as detailed by (He et al.
2016), which are pre-trained on the ImageNet database (Deng
et al. 2009). We adopt a leave-one-domain-out evaluation
method for all benchmarks, where one domain is reserved for
testing and the remaining domains are used for training and
validation purposes. To ensure consistency and fairness in our
experiments, we standardize the batch size and learning rate
at 128 and 0.2, respectively, during local training. Further-
more, to guarantee that the local models reach convergence
within each training phase, we set the number of local epochs
E to 1 and define the total number of communication rounds
R as 200. The hyperparameters for our teacher-student model
have already been provided in the Method section.

Evaluation Metrics. The evaluation metric is the perfor-
mance of the model when each domain serves as the test
domain. Additionally, we use the average performance Avg
across all domains to assess the stability of the global model.

Results
We achieved state-of-the-art results on three widely used
datasets, particularly on PACS. As observed in Tab.1, both
FedDG and DG exhibit strong generalization to nearby do-
mains but struggle with distant domains. For example, do-
mains Photo, Art, and Cartoon are adjacent, so using TTA
yields significant benefits, whereas the effect is less pro-
nounced for domain Sketch. Nevertheless, our method, Fed-
SPL, does not lose the ability to recognize domain S during
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Figure 3: The convergence of the FedSPL after 25 iterations

the adaptation process. The sample distribution of the PACS
dataset can be referenced from (Zhou et al. 2021).In the
OfficeHome Tab.1 and Digit-5 Tab.3 datasets, due to the rel-
atively dispersed data distribution, the effectiveness of TTA
methods is not as significant Fig.4 shows the convergence of
FedSPL during test-time adaptation. Our FedSPL achieves
convergence within just 2 to 3 iterations, demonstrating ex-
ceptional stability.

It is worth noting that, intuitively, one might expect that us-
ing TTA methods would always improve model performance.
However, our experiments revealed that when the model’s
initial performance is poor or when the gap between the test
unknown domain client and the training domain clients is
large, the use of TTA may not yield optimal results and can
even lead to a decline in performance.

Ablation Studies
Effectiveness of MBSL and FMR We performed a macro-
level ablation study on the two main modules of our model.
As observed in Tab.4, both MBSL and FMR contribute to
improving the baseline model and complement each other.
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Figure 4: The impact of different learning rates η and batch
sizes B on model performance with the PACS Dataset and
the Test Set as Domain S.

Additionally, MBSL, as the test adaptation component of
FedSPL, also seems to address the global model’s inherent
learning deficiencies.

Ls Lw Lc P A C S Avg

× × × 92.77 76.67 77.97 81.03 82.26
✓ × × 97.04 87.55 83.28 84.27 88.03
× ✓ × 96.59 84.47 80.38 81.93 85.95
× × ✓ 96.95 85.78 79.31 80.25 85.57
✓ ✓ × 97.78 87.74 83.32 83.69 88.13
✓ × ✓ 97.37 88.18 83.15 83.18 87.97
× ✓ ✓ 97.19 85.64 81.74 80.78 86.33
✓ ✓ ✓ 98.14 89.38 84.72 82.84 88.77

Table 2: The combination experiments of the three different
loss functions were conducted on the PACS dataset using a
pre-trained ResNet-18 (Best in bold)

Effect of Different Loss Functions In our ablation exper-
iments on different loss functions, we observed that when
generalizing to similar domains, methods Ls, Lw, and Lc all
contribute positively to varying degrees as shown in Tab.2.
However, when attempting to generalize to domains that are
significantly different from the training domains, methods Ls

and Lw continue to have a positive impact, whereas method
Lc can lead to a decline in model performance. Contrastive
learning in method Lc tends to capture domain-specific fea-
tures, such as the black-and-white nature of sketch images.
Therefore, it may be beneficial to reduce the proportion of
Lc during use. Nevertheless, from an average performance
perspective, method Lc still shows an improvement over
the baseline. In our experiments, we also observed that our
designed method for selecting strong labels significantly
improves model performance. Meanwhile, Lw and Lc are
specifically designed to prevent extreme cases, thereby en-
hancing model stability.

Selection of Hyperparameters. FedSPL differs from tra-
ditional FedDG in that it continues to learn during the testing
process. Therefore, it is crucial to explore the impact of hy-
perparameters η and B on model performance. As shown in
Fig.4, when the learning rate is high, the model fails to con-
verge, but if the learning rate is low, the model performance
also suffers. Through our experiments, we found that smaller
batch sizes B correspond to better performance, possibly

Method TTA mt sv up syn mm Avg
FedAvg × 95.47 52.28 89.62 89.75 55.62 76.55
FedProx × 94.03 59.01 95.20 94.21 61.82 80.85
AM × 95.77 59.91 95.28 92.10 63.54 81.32
RSC × 93.12 58.57 93.72 94.76 62.64 80.56
Scaffold × 91.03 37.15 85.69 71.26 60.33 69.09
GA × 96.41 64.12 94.01 94.39 62.92 82.37

SHOT ✓ 94.69 57.91 89.55 76.43 60.19 75.75
Tent ✓ 95.48 60.67 91.67 78.56 62.49 77.77
T3A ✓ 94.63 49.90 88.46 75.47 51.25 71.94
MEMO ✓ 95.92 52.85 89.84 80.12 55.48 74.84
EM ✓ 96.64 57.21 92.29 85.69 62.08 78.78
BBSE ✓ 94.47 57.26 91.34 85.54 61.59 78.04
Surgical ✓ 97.35 59.93 94.19 86.06 65.87 80.68
ATP ✓ 97.81 62.18 95.41 87.91 69.98 82.65
FedSPL (ours) ✓ 97.70 78.68 96.77 94.93 70.73 87.76

Table 3: Results (%) of Digit-5 on ResNet18 . (Best in bold)

Method P A C S Avg

Fedavg 91.73 73.58 76.02 76.46 80.22
FMR 92.77 77.29 77.97 81.03 82.26
MBSL 99.52 87.40 82.12 80.96 87.50
FedSPL (ours) 98.14 89.38 84.72 82.84 88.77

Table 4: Ablation study with different components of Fed-
SPL. Both FMR and MBSL have demonstrated strong perfor-
mance, making them indispensable components of FedSPL.

because a smaller B results in a higher learning frequency,
leading to improved model performance.We have included
some of the experiments in the appendix.

Conclusion
In this paper, we propose a new framework to address FedDG,
leveraging test-time adaptation (TTA) methods to enable
FedDG models to adapt to the distribution of unknown do-
mains (TTA-FedDG). Based on this framework, we designed
the method of Federated domain generalization based on a
select Strong Pseudo Label (FedSPL) which combines fea-
ture ordering in training and Knowledge Distillation in test
time. The FedSPL enhances the model to generalize to un-
known clients by incorporating an improved Teacher-Student
model into the global model. We introduce a new label selec-
tion strategy, and to prevent the selected strong labels from
being overly uniform, which could lead to the neglect of
other classes, we also design a loss function for weak labels.
Additionally, to mitigate the instability issues commonly asso-
ciated with TTA, we introduce image-based contrastive loss
and feature mixing based on feature reordering (FMR) during
local model training, thereby improving the robustness of the
local models. We have demonstrated the effectiveness of this
method across multiple test datasets. Furthermore, our exper-
iments revealed that in FedDG, when the gap between the
test unknown domain client and the training domain clients
is large, adaptation may struggle to achieve better learning
outcomes, and in some cases, performance may even degrade.
We hope that our research contributes to enhancing domain
generalization in FedDG models while preserving privacy.
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